DIEGO FAZI

Mailing address: Solar Energy Conversion Group

Chemical Sciences & Engineering Division

Bldg 200, Room E105 Argonne National Laboratory

9700 South Cass Ave.

Argonne IL 60439-4831

E-mail addresses: <u>dfazi@anl.gov</u>

Office Number: 630-252-5796 Fax: 630-252-9289 Personal Pages: http://faculty.wcas.northwestern.edu/diego-fazi/

http://www.fazid.org

Research Interests

Diego Fazi comes from a theoretical Physics background and he performed research in gravitational-wave astronomy within the project LIGO from 2005 to 2012.

In October 2012 Dr. Fazi joined the CSE division at Argonne as a postdoctoral appointee in the Solar Conversion group lead by David Tiede.

Dr. Fazi's research involves applying computational methods used in gravitational-wave data analysis to the field of solar fuel catalysts characterization. In particular he uses Markov-Chain Monte Carlo techniques coupled with Pair Distribution Function analysis to compare experimental high-energy X-ray scattering data with theoretical models of water-splitting solar photo-catalysts, with the goal of characterizing the catalysts' molecular structure and improving the efficiency of hydrogen production from artificial photosynthesis.

Education

University of Bologna, Bologna (Italy) (In-residence at the California Institute of Technology)

Ph.D. in Physics. Awarded on: April 28th 2009

Major: Theoretical Physics and Mathematical Methods.

Thesis subject: Gravitational Waves Data Analysis and General Relativity.

Dissertation Title: "Development of a physical-template search for gravitational waves from spinning

compact-object binaries with LIGO."

University of Bologna, Bologna (Italy)

M.S. (laurea) in Physics – 110/110 Summa Cum Laude. Awarded on: March 12th 2004

Major: Nuclear and Subnuclear Physics.

Thesis subject: General Relativity and Quantum Field Theory.

Dissertation Title: "Gravitational collapse of a radiating shell composed of charged bosonic matter"

(original title in Italian)

Fellowships and Awards

- Grant for an allocation of 764,640 CPU hours on Northwestern's "Quest High Performance Computing System" as PI of a project for gravitational-wave data analysis and simulations (01/17/2012).
- Honorable mention for the 2009 GWIC Thesis Prize (gwic.ligo.org/thesisprize/2009/)

- Italian Government Graduate Fellowship 2005-2008
- LIGO-Caltech fellowship 2005-2008
- Caltech-TAPIR fellowship 2008-2009

Research Experience

Argonne National Laboratory and ANSER, Lemont, IL

Post-doctoral Appointee in the Solar Conversion gorup, 2012 - present

• I use Markov-Chain Monte Carlo techniques coupled with Pair Distribution Function analysis to compare experimental high-energy X-ray scattering data with theoretical models of water-splitting solar photocatalysts, with the goal of characterizing the catalysts' molecular structure and improving the efficiency of hydrogen production from artificial photosynthesis.

LIGO Scientific Collaboration (LSC)

Performed research as a member of the Laser Interferometer Gravitational-wave Observatory (LIGO) and LIGO Scientific Collaboration (LSC) at various institutions, 2005 - present

Northwestern University and CIERA, Evanston, IL

Post-doctoral Fellow in Astrophysics, 2009 - 2012

- Developed a new data analysis strategy for the search of GWs emitted by stellar compact-object binaries, using matched-filtering techniques. Paper in preparation (see publications)
- Contributed developing a Markov Chain Monte Carlo (MCMC) Bayesian code for parameter estimation of astrophysical GW sources

California Institute of Technology, Pasadena, CA

Post-doctoral fellow in Physics, July-August 2009

Visitor in Physics, 2005-2009

• Studied, developed and implemented all the code for a new search of GWs emitted by spinning compact-object binaries using precessing GW templates

University of Bologna, Bologna (Italy)

MS and PhD student, 2003-2005

- Studied the gravitational collapse of self-gravitating bodies in curved space-times and the associated quantum-mechanical radiation emission. Subject of my MS thesis.
- Results following this study lead also to the publication of a paper (see publications)

Publications

MS Thesis:

- "Collasso gravitazionale di un guscio radiante di materia bosonica elettricamente carica" (Gravitational collapse of a radiating shell of electrically charged bosonic matter) By D. Fazi

Laurea (MS) thesis, University of Bologna (2004), (http://faculty.wcas.northwestern.edu/diego-fazi/documents/thesis_laurea.pdf)

PhD Thesis:

- "Development of a physical-template search for gravitational waves from spinning compact-object binaries with LIGO"

By D. Fazi

PhD thesis, University of Bologna (2009), (http://faculty.wcas.northwestern.edu/diego-fazi/documents/PhD thesis.pdf

Papers in preparation:

- "Physical Templates in the search for gravitational waves from spinning compact-object binaries with ground based interferometers"

By D. Brown, Y. Chen, D. Fazi, M. Vallisneri in preparation

- "Evidence for Spin in Compact Binary Coalescence: when can we trust it?" Raymond, V., Aylott, B., Farr, B., Farr, W., Fazi, D., Kalogera, V., Mandel, I., Röver, C., Veitch, J., in preparation

Selected refereed Journal Articles (total 59):

- "Classical dynamics and stability of collapsing thick shells of matter" By G.L. Alberghi, R. Casadio, D. Fazi. gr-qc/0601062. Class.Quant.Grav. 23 (2006) 1493-1506.

- "Search for Gravitational Waves from Low Mass Compact Binary Coalescence in 186 Days of LIGO's fifth Science Run"
By LIGO Scientific Collaboration (B.P. Abbott et al.).
arXiv:0905.3710 [gr-qc].
Phys.Rev. D80 (2009) 047101.

- "Search for Gravitational Waves from Compact Binary Coalescence in LIGO and Virgo Data from S5 and VSR1"

By LIGO Scientific and Virgo Collaborations (J. Abadie et al.). arXiv:1005.4655 [gr-qc].

Phys.Rev. D82 (2010) 102001.

- "Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3"

By LIGO Scientific Collaboration (J. Abadie et al.).

arXiv:1205.2216 [astro-ph.HE].

10.1088/0004-637X/760/1/12.

Astrophys.J. 760 (2012) 12.